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Report Summary  
 

 
We started this coding project by developing the kinematics simulator function 

‘NextState’. The purpose of this function is to use the Euler method, starting with the 
known configuration of the chassis arm and wheels and the command velocities at that 
instant to find the resulting configuration after a small time step. The traditional Euler 
method is used to find the resulting wheel and arm configuration simply using the 
command velocities. The chassis configuration can then be determined using odometry 
for the  four-mecanum-wheel robot. The odometry calculation uses two cases to 
determine the change in chassis coordinates depending on whether the magnitude of 
the angular velocity of the chassis in the z direction is zero or not. In this function, 
instead of using zero, the restriction was set at an  angular velocity of .001 rad. This is 
meant to account for the possibility of MATLAB not recognizing extremely small 
velocities that are effectively zero, for example if a number is to the order of 10-24 as 
zero. Another enhancement that this function implements is limiting velocity magnitudes 
at the beginning of the function ensuring that the change in configuration is reasonable. 
We also attempted to impose arm joint limits which were checked just after each euler 
step to ensure that the robot arm would not collapse on itself. In the end we deactivated 
these because the joint limits we established prevented the robot from reaching the 
cube. 

The next function that we built was the end effector trajectory generator 
‘TrajectoryGenerator’. This function creates a sequence of desired end effector 
configurations, Tse, that will be used as a reference to guide the calculation of robot 
configurations through the necessary trajectories to accomplish the task. It includes 
generating trajectories from starting position to the standoff position to picking up the 
cube until finishing the task. We first defined a simulation length of 15 seconds for the 
entire set of tasks. Then each individual trajectory was categorized based on how long 
the change in configuration was estimated to take. Trajectory 1 and 5 were categorized 
as long movements as they required the most movement of the robot arm. Trajectories 
2, 4, 6, and 8 were then categorized as short movements. The ScrewTrajectoy function 
from the MR textbook was then used to generate each section of the trajectory from the 
starting and intermediate end effector configurations. These trajectories were then 
converted into a set of rows with the corresponding gripper configurations and spliced 
together to create one matrix that sequentially described the entire robot motion in the 
form of End effector configurations, Tse.  

The feedforward plus feedback controller, ‘FeedbackControl’, was the last 
function we designed that uses the control law appearing in the MR textbook in equation 
13.37 to determine the desired command joint velocities at each configuration to reach 
the next desired configuration. One enhancement that we made to this function involved 



incorporating a tolerance of .0001 to the Pseudoinverse of the wheel and joint jacobian. 
This recognized any number smaller than the tolerance as zero to prevent singularities. 

Lastly, the Wrapper function incorporates the 3 previous functions to create a 
reference trajectory made up of chassis, arm, and wheel configurations that the 
simulated robot can follow. First, all of the end effector configuration waypoints are 
defined and used by TrajectoryGenerator to create the reference trajectory. The desired 
gains for the proportional and integral controller are then defined along with the actual 
initial configuration of the robot. Then a loop is defined, starting by designating  the 
desired and next desired end effector configurations for each step, which are then fed 
into FeedbackControl. Then all of the robot configuration angles and positions are 
updated using NextState and the actual end effector configuration Tse for each step 
recorded before repeating the loop. During this loop the velocity error, integral errors 
and positions are stored for each iteration to later be graphed. 

 
 
​  



Results 
 

 
The “best” case involved FeedForward + P control in which kp = 5. The plot of 

the six error twist demonstrates that the error quickly is driven to zero with no overshoot. 
Both manipulability plots exhibit no singularities along the trajectory, with small spikes 
relating to the extensional movements of the robot arm. These movements are not 
singularities, however the robot is approaching a position in which it loses the ability to 
extend any further, causing a spike in the manipulability plot. The small variation in the 
error twist is attributed to some error once the robot begins turning to place the block, 
but is quickly reduced back to zero again. Adding an integral controller may reduce this 
error, however this would create overshoot as will be discussed in the next case. Tuning 
this controller consisted of changing the gains such that the time of correction needed to 
go between the input initial configuration and the desired initial condition was minimized 
with no overshoot.  best_vid 

https://drive.google.com/file/d/1bF3JrNXJFh5aSI_k2avB7Z4u4cLhJa-g/view?usp=sharing


The “overshoot” case used FeedForward + PI control in which kp = 1 and ki = 5. 
In this case, there was the elimination of the small error seen around 7s of the “best” 
case, but very noticeable oscillations are present when the robot is correcting the actual 
initial location to the desired initial location. The same two peaks in the translational 
manipulability plot are present, again representing the extension of the robot arm 
towards a singularity orientation, but there is now another peak at the very beginning of 
the simulation. This peak, and the oscillations present just after it, represents the 
oscillating correction of the robot arm position as it corrects from the offset initial position 
to the desired one. There are also oscillations present in the rotational manipulability 
plot at the beginning, representing the oscillatory correction of the orientation of the end 
robot. While the overall error for this case avoids the small error in the middle of the 
simulation, the large overshoot at the beginning requires more of a correction than the 
“best” case simulation. overshoot_vid 

https://drive.google.com/file/d/1fkiOI9cnkBvTRFQaUbaI-54ziAK7FwUo/view?usp=sharing


The “New Configuration” case saw the block moved to the following locations: 
 &  𝑟

𝑐𝑖
 =  (0. 75, 0. 25, 0) 𝑟

𝑐𝑓
 =  (0, − 2, 0)

Using FeedForward + PI control with controllers of kp = 3 and Ki = 1, the robot 
successfully corrected to the desired trajectory and moved the block from its new initial 
state to its new final state. There was minimal overshoot, and in turn, minor oscillations 
in the transient stage of the robot’s motion. The same small error occurs in the middle of 
the trajectory, much like in the “best” case, but it is again corrected back to an error of 
zero. Tuning this controller was relatively easy and followed the same process as the 
“best” case. Minimizing oscillations, overshoot, and correction time (rise time) were the 
goal, and these controllers provide an effective way of completing the task. 
newConfig_vid 
 

https://drive.google.com/file/d/1t-MD5kGth-FP5erUOT-SzeKgRNPTwJCg/view?usp=sharing


Discussion  
 

1.​ Increasing the integrator term does a good job of reducing steady state error 
quickly, however can introduce oscillations. The integral controller sums all of the 
past errors to correct the output to be closer to the steady state error. If the initial 
error is large, that large stored error will introduce overshoot in the error plot as 
the oscillation decays towards the steady state value. While this does mean there 
should be much less or zero steady state error, these oscillations produce odd 
physical movements of the robot while it is correcting to the desired trajectory. It 
takes time, and joint motion to correct for these oscillations, which could 
potentially strain the robot or the task being performed.  

 
2.​ The manipulability factors became larger as the robot extended. The fully 

extended position is a singularity, and as the robot’s joint extended to their 
maximum values they approached this singularity position. As the arm extended, 
it approached configurations in which it could not extend any further, as seen in 
the initial extension of the arm in all videos. The configuration the robot is in is 
not a singularity, as seen in the lack of a spike in either manipulability plot, 
because there was always some joint not fully extended, allowing the robot to 
perform the task without losing the ability to move in any needed direction. 

 
3.​ If maximum joint velocities are set at low values, then the error will increase 

again after picking up a cube. This happens because when the gripper closes to 
picking up the cube, there is no required arm movement. Once the arm begins to 
move again, the reference end effector trajectories will require a certain joint 
velocity in order for the arm to closely follow the desired path. When the joint 
velocities are set too low, the robot arm is physically not able to move fast 
enough in order to closely track the desired path. This therefore causes the error 
to increase. 

 
4.​ The types of tasks where a UR5 robot would use velocity control is when it needs 

to precisely move to a specific point or if it needs to move in a smooth manner. 
One example of this is if the robot were used for soldering small electrical 
components. Here the position of the end effector requires high precision. The 
types of tasks where a UR5 robot would use Torque control is in tasks that 
manipulate the environment and require the robot to be gentle with said 
environment to reduce damage. One example of this is if the robot had to tighten 
screws. These tasks require the screw to not be over or under tightened to work 
properly therefore torque control is best used to ensure that they are not 
damaged and placed properly. 



5.​ Some additional parameters you would need to know in order to compute 
required torque are: the gravity vector, the list of link frames relative to the home 
position, spatial inertia matrices Gi of the links, and the reference joint variables, 
velocities, and accelerations in addition to the actual joint velocities and 
variables. I would use the function ComputedTorque to find the required torques. 
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